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Thermodynamics for Coulomb Systems: 
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In this paper I combine techniques recently developed by Charles Fefferman 
with the well-known methods of Joel Lebowitz and Elliott Lieb to resolve some 
technical problems left unsettled by Lebowitz and Lieb's fundamental 1972 
paper "The constitution of matter: Existence of thermodynamics for systems 
composed of electrons and nuclei." 
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1. I N T R O D U C T I O N  

In their important  papers (1) Joel Lebowitz and Elliott Lieb proved the 
existence of the infinite-volume Helmholtz free energy density limit for a 
neutral system of electrons and nuclei interacting via Coulomb forces. They 
showed that the limit is a convex function of the particle density vectors. 
This means that the free energy limit is continuous everywhere except 
possibly at the boundary of its domain of definition, i.e., at vanishing par- 
ticle densities. As Lebowitz pointed out in Ref. 2, he and Lieb overlooked 
this possible discontinuity at vanishing particle densities when they applied 
their analysis of the neutral system free energy limit to other problems in 
their paper. In particular, it leaves a gap in their proof  of the free energy 
limit for systems with a net charge and causes technical difficulties in their 
analysis of the grand canonical ensemble. Continuity at vanishing particle 
densities is actually necessary for their net charge result to hold. The major  
probIem with their analysis of the grand canonical ensemble can be circum- 
vented using ideas implicit in other parts of their paper. 
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In addition to what might be called its technical interest, this possible 
discontinuity at vanishing particle densities poses the physically meaningful 
question of whether a vanishingly small density of some particle species can 
render a nonvanishing catalytic effect on the thermodynamics of the 
system. Lebowitz discusses this in (2) and expresses interest in seeing the 
problem resolved. I will do that in this paper by combining Charles Feffer- 
man's recent analysis (3) of the infinite-volume pressure limit with the work 
of Lebowitz and Lieb. These approaches complement each other and 
provide the apparatus for dealing with many interesting questions is quan- 
tum statistical physics. This will be evident in a forthcoming article by Fef- 
ferman in which he shows that quantized electrons and protons at suitable 
temperature and density form an ideal gas of hydrogen atoms or molecules. 
To present the results in this paper in an understandable way, I need to 
describe and relate the essential ideas of the Lebowitz-Lieb and the Feffer- 
man approaches. I hope that researchers interested in applying these 
techniques will find this exposition useful. This paper also contains an 
explicit calculation of the low-density asymptotic form of the free energy. 

As the free energy limit is the central object in their approach, 
Lebowitz and Lieb focus on the canonical ensemble. Fefferman analyzes 
the grand canonical ensemble. The problem of continuity of the free energy 
at the boundary of the particle density vector domain amounts to the 
question of whether the infinite-volume limit and the vanishing particle 
density limit can be interchanged. Lebowitz and Lieb's method does not 
give the uniform convergence necessary to interchange these limits. On the 
other hand, it is not hard to deduce some quantitative control on the rate 
of convergence of Fefferman's grand canonical pressure limit as a com- 
ponent of the chemical potential approaches -oe .  In particular, the con- 
vergence is uniform there. Once the equivalence of the canonical and grand 
canonical ensembles has been established (the possible discontinuity caused 
problems with Lebowitz and Lieb's proof of this), we can equate particle 
density tending to zero and chemical potential tending to -oo  and con- 
clude that the same uniformity holds for the free energy limit. I thank both 
Elliot Lieb and, of course, my thesis advisor Charles Fefferman for 
suggesting this problem and for many helpful discussions. 

2. NOTATION 

This paper deals with systems of s species of positively and negatively 
charged particles with charges (el ..... es) = E ~  y_s. The negatively charged 
particles are assumed to be fermions. For finite-volume systems the par- 
ticles are contained in some region O c ~3 whose volume is denoted If2[. 
The number of species j particles is denoted Nj; N =  (Nt ..... Ns) is the par- 
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ticle number vector and p = N/lt2[, the particle density vector. In this paper 
the regions s will always be balls BR. The results here extend to the same 
more general domains that are considered in (1) and (3). The Hamiltonian 
governing a system of N particles in a ball BR is HN, BR = --z] N -[- VN, where 

- - A N = - - ( m l A u t +  .. .  +msAus  ) 

Ni 

i - - I  k = l  

1 ~  ~, Ni Nj eiej 
and VN=-~ ~, Z ]X i~_X~i [, lCk  if i= j  

with m i the mass of a species i particle and X~ the kth species i particle. 
L 2 - {square integrable O(...X~...) on Z~-~ N i and satis- HN, BR acts on N, BR- 

fying the correct statistics} with Dirichlet boundary conditions. In our 
problem the negatively charged particles are fermions. So, if ei < 0 O is 
assumed antisymmetric in the species i variables. The positively charged 
species may be either fermions or bosons (depending on which species) and 
therefore require that ~ be either antisymmetric or symmetric in the 
corresponding variables. This is what is meant by "satisfying the correct 
statistics." Let /~-1= temperature. The canonical partition function for N 
particles in a ball BR is Tr[exp(-flHN.~,)]. Define this trace to be 1 if 
N = 0. This defines the free energy per unit volume by 

f R(fl, N/IBRI) = -(fl IBRI) -~ In Tr[exp(--flHN, BR)] (2.1) 

For p not of the form N/IBRI, fR(fl, p) is defined by linear interpolation. 
The grand canonical partition function depends on another variable/~ ~ ~ ,  
the chemical potential. It is given by ZN~ z~0 e ~  N Tr[-exp(- fiHN, B~)] and 
defines the pressure by 

UR(fl, p)=(fllBRl)-~ln ~ e~NTr[exp(--fiHN, e~)] (2.2) 
N ~ Z~O 

In this paper, we are interested in the infinite-volume (or "thermo- 
dynamic") limits F(fl, p) = l i m R ~  FR(fl, p) and H(fl, #) = limR~o ~ HR(fl, #). 
The dependence of these function on fl will not be important here and will 
usually be suppressed. That is, we will write FR(p), etc. 

3. LEBOWITZ A N D  LIEB'S ANALYSIS  

3.1. The neutral  free energy l im i t  

Consider a system of N particles in a ball BR. Let BRI and BR2 be dis- 
joint subdomains of B R and let N 1 + N 2 = N. The key step is a comparison 
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between the system with N particles in Be and the system with N ~ particles 
in Bg~ and N 2 in Be~. Under the assumption that one of N ~ and N ~ is 
neutral, we will prove that the free energy is increased if the particles are 
contrained to lie in the smaller domains. This fact lies at the heart of ther- 
modynamic stability and manifests itself in the convexity of the free energy 
limit F(p). Let us record and prove it in the following form. 

L.L. I nequa l i t y .  Let Be~wB~cB e with Be~c~Be2=~. And 
N ~ + N z = N with N ~ - E = 0. Then, 

Tr[exp(-flHN, e,)] >~Tr[exp(-flHNl.e~,)]" Tr[exp(-/?Hu2.a~2)] (3.1) 

ProoL Notice that 

Tr[exp(--flHu, BR)] = sup ~ exp - fl(HN, B. On , On) 
{q~,} . = 1 

(3.2) 

where the supremum is taken over all orthonormal sequences {~,} of 
L2N(BR) functions. This quantity is only decreased if the supremum is taken 
over a restricted class of functions, namely, those which correspond to 
having N ~ particles in Be,, i = 1, 2. This idea is behind the proof. 

Consider the disjoint union of the 

K= N] 
i = I  

N 1 N 2 
permutation copies {Di} of DI=X~=I(BRIxBR; ). Notice that 
L2N~(BR,) | L2N2(BR2) is isomorphic to the subset of L2(DI) functions which 
are statistically correct in the N 1 and N 2 variables separately. Let HD~ be 
the old Hamiltonian Hu.eR acting on L2NI(BR~)| ). Any 
q~eLZ,(BR~)| can be extended in the unique and obvious 
way to a function ~b which is statistically correct in all N variables, 
i.e., which is L2N(Be). Notice that (~i, ~ j ) = K ( ~ ,  HD,~j) for 
qSi, ~j~L2N,(Bel)| ). Hen~_~ if {~i}~L2NI(Be~)| ) is an 
orthonormal sequence then {(1/x/K ) ~i} ~ L2N(Be) is a candidate for the 
supremum on the right side of (3.2) and Ziexp{-~(HN, s,(1/x/-K)~s, 
(1/x/K) ~i]  } = ~ i  exp[-/3(HD~ ~g, ~ ) ) .  If the supremum of this quantity 
is taken over all orthonormal sequences in L2N~(Be,)| we obtain 
Tr[exp(-flHD~)] and, by the comments about restricting the class of 
functions in (2.2), find that Tr[exp(--/3HN, BR)] /> Tr[exp(--flHDx)]. 

Cla im.  

Tr [exp( - BHo~ ) ] ~> Tr [exp( - / /HN, eR2)]- Tr [exp( - flHN2,BR2 ) ]. 
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Proof of Claim. Observe that HDI = HNI BR, + HN2,BR2 - -  W where 

s N ~ ,  N~ eiej 
w ( .  r,.. )= f ,  2 Ix,T- r,i 

for X~ ~ B R, and YJ ~ B R~ 

is the Coulomb interaction between the disjoint balls. The eigenfunctions 
for HNIB~+HN~B,~ on LZ~(BR~)| are { 0 ~ ( " X f " )  
~2j('..Y~...)}~= 1 where {~,~} and {~P2j} are those for HN~B,,, and HN~B,;, 
.espectively. This decomposition results in Tr{exp[-fl(HN~m~ t+ 
HN~ Bn2) ] } = Yr[exp( - / ~ H ~  ~ )] .  Yr[exp( --~HN; Be2) ]. The assumption 

' . ' 1 ' 

N ~  E = 0 wall allow us to conclude that the expected value taken over the 
above trace of the Coulomb interaction between the disjoint balls is zero. 
This is the screening that keeps the world from collapsing and consequently 
insures the existence of the thermodynamic limit. 

Let ( W )  denote this expected value. That is, 

( w )  
Y ~ = I  (WOx~2j, ~1s~2~)exp{-/~((H~, Be~ + HN2Be2)~P~" ~92~, O,~O2j) } 

Y~i,j e x p [  - fl(" �9 "),j] 

'Y~i,~= 1 SBR 1 [.BR 2 (/)11(x) (I)2j(Y)/([X- y l )dxdy  e x p [ - f l (  "')a] 

Ei, j exp[ - fl(" �9 ')•] 

where ~1i, 452j are the charge densities associated with ~Pli, ~P2i, respec- 
tively. Pulling the sum inside the integral gives 

IB ~ @I(X) q~z(Y) dxdy, where ( W) 
"-.2 Ix-  yl R 1 

Z~~ cbli(x ) exp[ --~(HN~,,R~li, ~1i)] 
451(x ) = 

~,~~ exp[--~(HN~,,R~Oli, ~1i)] 

with the analogous definition of q~2. As N~. E= O, ~,~ ~bil(x ) dx = 0 for all 
i = 1,..., oo and so ~-R~ ~l(X) dx = 0. As simple arguments show [see Appen- 
dix of Ref. (1) if necessary], the rotational symmetry of HNg, BR~ implies that 
~i(x) is radial, i =  1, 2. Since BR1 r~ BR2 = 0, Newton's famous electrostatic 
theorem shows that 

v- - - - -=  a x a y  / J  ~l(x) dx3 
Ix - -  Yl L Be~ 

x q~2(Y) dy Idistance of centers[ = 0 R~ 
proving that ( W )  = O. 



980 Hughes 

The claim now follows from the following theorem by substituting 

A = HN~,SRt + HN:,BR:, B = W, {fi} = {01~'02j} 

T h e o r e m  (Pe i e r l s ) .  Let A and B be self-adjoint operators on a 
Hilbert space with domains D(A) and D(B) and let F =  {fi} be a countable 
set of orthogonal vectors in D(A) c~ D(B). Then, 

where 

Tr[exp(A + B)] ~> ~ [fi ,  exp(A + B) f i ]  
i 

> ~  exp[fi, (A + B) f~] 
i 

>~ exp( B ) A,F" ~. exp(fi, Afi) 
i 

Zi ( Bfi, f i) exp(fi, Aft.) 
(B)A 'F=  Z~ exp( f .  Aft) 

ProoL The first inequality follows from our alternative definition of 
trace as a supremum. The second and third follow from the convexity of 
exp as a function on the measure space that a function f i  induces on the 
spectrum of A + B  and on the space {fi, Bfi} with measure 
exp(fi, A f i ) ~  i exp(f/, Afi), respectively. I 

Therefore, the L.L. Inequality is proved. Taking the logarithm of both 
sides better reflects its fundamental physical significance as a statement 
about free energies: 

IBRI FR(N/IBRI) <~ [B~ll FR,(N~/IBR~]) + IBR21 FR2(NZ/IBR2[) (3.3) 

Divide both sides by ]BR] and notice that it closely resembles a convexity 
condition. 

The L i .  Inequality generalizes in the obvious way to the cas of any 
finite number of disjoint subdomains BR, ~ BR with neutral particle vectors 
N i. (It still works if just one N i is not neutral.) Using its free energy density 
form, the statement is that 

FR(N/[BR[) <~ ~ IBR,I/IBR{ FR,(N]IBR, I) 
i 

(3.4) 

This results in a kind of montonicity in R for FR as R ~ oo. To prove the 
existence of the limit, Lebowitz and Lieb pack subdomains {BR,} in a ball 
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BR in a special way, make precise what monotonicity exists, and then 
demonstrate a lower bound. 

For imagistic reasons, Lebowitz and Lieb refer to their packing as a 
"swiss cheese" (see Ref. 4). The construction is based on the simple idea 
that disjoint open cubes of side length d can be placed inside of a domain Q 
in such a way that they cover at least 112\12./5d1/112[ proportion of the 
volume, where 12.rid = {X~12 [ [X--12c[ < x / 3 d } .  To see that this is true, 
simply cover 12 by disjoint cubes and then remove all those that touch 12c. 
Now, if a ball B R is packed with specified finite numbers of balls of known 
radii {Ri}M1, then for 12=BR\UBR, we can get a lower bound on 
[O\12./Sdl/j12 [. By placing a ball of sufficiently small radius R o at the center 
of each cube, we can increase our packing in such a way that a definite 
additional proportion of BR is covered. As Lebowitz and Lieb calculate, it 
is possible to pick Ri=(1/28)Ri+ 1 and to have the BR~ cover 1/28 of the 
volume BR\UM=i+IBRk (where Rm=(1/28)R). If we start with an 
arbitrary Ro and define R i=  28Ri_ 1 then we have a method for packing 
exponentially larger domains BRk with the smaller domains {BR,}~<k in 
such a way that the proportion not covered goes exponentially to zero. 

Suppose now that Ro has been picked so that 28(4~/3) R~p = N O ~ Z~0 
where p E B~" is our particle density vector. Define N~= 283J(47c/3)Ro 3 p for 
j~> 1. If N j particles are in BR, then their density is p ifj>~ 1 and 28p if j =  0. 
Hence, the N ~ particles in a large ball BR~ can be divided among the 
smaller balls BR,, i < k, by putting N ~ particles in each ball of radius Ri. 
The reason that the density in the smallest ball must be 28p rather than p 
is that by construction only 1/28 of the volume of BRk \ U~_~ ~ BR, is covered 
by BR0. 

Assuming p. E = 0, the L.L. Inequality in the form (3.4) applies to give 
a recursion relation between the FRk: 

I U BRol k , I U BR;I 
F , d p ) - I B , d  FR0(28p)+ ~ iBR----~Fn(p)-d~(p) (3.5) 

for some dk(p) >~ O. Here, U BRj denotes the union of all balls of radius Rj. 
One can explicitly calculate the volume ratios and use the implicit recur- 
sion to obtain 

k '  d:(p) 
FRk(P) = (1/28) FR0(28p)-- ~ 28 dk(p) (3.6) 

j - - 1  

Since each d](p)>1 0 the quantity FRk(P)+ dk(p) is decreasing. This should 
not be surprising since FRk + dk is the free energy per unit volume for the 
system obtained by restricting the particles to the balls in the covering; as 
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Rk--* oo a smaller proportion must be constrained to the smaller balls (in 
particular to the BR0 at much higher density 28p). Note that we do not 
know that FRk(P) is decreasing as Rk --* oo. 

To show that FRk(P) converges, Lebowitz and Lieb demonstrate a 
lower bound h(p) for FRk(p ) which is independent of R. For  if 
FRk(P) > h(p) gRk then by (3.6) ~2~=1 [d](p)/28] < oo and dk ~ 0. Thus 
FRk(P) + dk(p) is also bounded. By its monotonicity it converges to a limit 
limk _, o~ FRk(P) + dk(p) = F(p). Because lira k ~ ~ dk(p) = 0, this limit equals 
limk_, 0o FRk(P). If we take a different sequence of balls with radii R ~  oo 
then, by on one hand packing the BR) with balls of our original radii Rz 
and on the other picking our BRj with balls of radii BR,, we can see that 
both sequences give the same limiting free energy F(p). 4~Ve can thus write 
F(p )= l imR~FR(p ) .  Finally, let me indicate the lower bound that 
Lebowitz and Lieb use. 

L e m m a .  There exists a finite function h(fl, p) such that for any BR 
and N with p = N/IBRI. We have 

ProoL Recall 
inequality: 

FR(P, t )  >>- h(t, p) (3.7) 

the familiar Lieb-Thirring "stability of matter" 

HN, B, >~ -- C Ni 
i 1 

for class of ~ that we have been considering. The same holds with a dif- 
ferent constant C if we replace HN,~R= --AN+ V N by --1/2ZJxq- V u. 
Inserting this into the partition function gives 

Tr[exp(-tiHN,eR)] ~>exp (tiC ~ Ni) Tr[exp(t/2AN,,~R)] 
i = 1  

The result now follows from the free particle free energy bound (see Fisher 
(1964)). 

3.2. Addi t ional  Properi t ies and the Problem at ~E • 

Notice that the convergence proof presented above offers no means of 
determining the rate at which FRk converges to F. The quantity IF-FRkl is 
related to the convergence of the dj to zero. The dj arise as errors in the 
inequality (3.4) and are related to ratios of supremums taken over com- 
plicated sets of functions. They appear quantitatively unmanageable. 
However, Lebowitz and Lieb were able to deduce several qualitative 
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features about the convergence of FR~ and about the resulting limit. 
These rely primarily on the convexity inherent in (3.3). In particular, they 
prove the following theorem. 

Theorem. The limit F(p) is a convex function on the set 
E • = {p~ ~%olpE=O}.  

ProoL Let p = 2 p l + ( 1 - 2 ) p  2 where pi~E • and 2 is a rational 
number between 0 and 1. As I pointed out above, the limit F is indepen- 
dent of the sequence of balls converging to infinity. In particular, we can 
pick a sequence {Ri}~=o and an associated packing of BR~ by {BR~}i<k in 
such a way that 2 proportion of balls of each radius Rz, i>~ 1, can contain 
density P l of particles and (1 - 2 )  density P2 and the smallest balls BR0 con- 
tain the necessary larger ratio. If we divide the P'[BRkt particles of BRk in 
this way and apply (3.4) we obtain 

j FR,(p) ~< 2 [I,.) BRzt/JBRkl fR,(pl)+ 1[.) BRoI/[BR~I FRo(cP~) 
l 1 

+ ( 1 - 2 )  ~ 0 BR, I/IBRkl FRk(P2)+ PU BRoI/rBR, I FRo(cp2) 
l = l  

In analogy with (3.5) this is 

= 2[FR~(p~) + dk(Pl)) -~ (1 - -  2)(FR~(p2) + dk(p2)] 

which converges to 2F(pl) + (1 -- 2) K(p2). | 

Since F(p) is convex on E ~ it is continuous everywhere except possibly 
at the boundary {pi= 0 some i} of E • Furthermore, F is  a monotone limit 
of continuous functions. To see this, notice that defining F R for all p ~ N' 

R ~ by linear interpolation preserves inequalities (3.3) and (3.4). If { j}j=0 is a 
sequence of radii corresponding to a particular p via the construction in 
the proof of the limit, then the errors dk(p) in (3.5) are likewise defined by 
linear interpolation. The same recursion exists and the convexity of the 
lower bound h insures that it still holds. Hence, FRk(P) + dk(p) decreases to 
F(p) for all p. Since FR~ + dk is defined by linear interpolation it is con- 
tinuous. 

A simple advanced calculus argument shows that a monotone limit of 
continuous functions converges uniformly to its limit on every compact set 
on which the limit is continuous. The converse of course also holds. As 
FRk(p) + dk(p) = 1/28FRo(28p)-- k Y~j= 1 dj(p)/28, we see that dk(p) converges 
uniformly to zero and FRk(P) converges uniformly to F(p) only where F is 
continuous. The convexity of F on E • does not guarantee this at c~E • 
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Notice that if FR converges uniformly to F in a neighborhood of a 
point p then we do not have to specify the particle density exactly when 
taking the infinite-volume limit. That is, if NR/[BR[ ~ p  then 
FR(NR/[BRI)~F(p). As Lieb points out in (4), this is important for the 
practical reason that particle density can never be exactly pinpointed in the 
laboratory. Lack of uniform convergence at {some p i=0}  would mean 
that our theory predicts that a few stray atoms whose nuclei are supposed 
to have density zero could change the laboratory results. In the same vein, 
notice that any density p e R s is at "vanishing particle density" if we />0 
decide to consider move species of particles in our analysis. 

In the next two sections, I will indicate the problems that this difficulty 
at OE • caused in Lebowitz and Lieb's paper. 

3.3. Systems with Excess Charge 

To apply the L.L. Inequality to the balls {BRi}i<k packed in BRk it was 
necessary that p. E = 0. Lebowitz and Lieb used the analysis implicit in the 
proof of the L.L. Inequality to extend their result to the case p" E = Q r 0. 

Basic electrostatics tells us that any excess charge Q in a domain O 
concentrates itself on the boundary where it has energy Q2/2C If211/3, C 
being the shape dependent capacity of f2. For a ball BR, the charge concen- 
trates itself uniformly on SR = 0BR with density Q/4~R 2. The electrostatic 
energy is thus 

1 Q2 ffs 1 
2 (4rcR2) 2 ,• s, I x -  Y------~I dER(X) dER(y) 

dsR = Lebesque measure on SR. By dilation this equals 

1 Q2 l f f  s 1 
2 (4rtR2) 2 (4rcR2)2 -R --1• sl ]x - Y-------~L dE(x) dE(g) 

where now dE is normalized measure on the unit sphere S1. Since 

[x_y------~d~(x) dE(y)=  d(x)=  1 
1 

the surface energy for B R is Qz/2R and C =  1/(&r/3) 1/3. This leads to the 
expectation that adding some excess charge QR to our otherwise neutral 
system of NR=p IBRI particles in BR results in a free energy per unit 
volume that is approximately FR(p)+ Q2R/2C ]BRI 4/3. If QR/IBRI 2/3 c o n -  

verges to a "surface charge" B then we expect that the limiting free energy 
density should be F(p)+B2/2C. Except for the possible discontinuity 
problem at OE ~, Lebowitz and Lieb prove this. 
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To be precise, assume NR" E =  0 and NR/[BRt = p. (Fixing this density 
precisely avoids undue complication arising from the problem discussed at 
the end of Section 3.2.) Let nR.E=QR with nR/IBR[ ~ 0  and 
QA]BRI2/3~B. The desired result is that FR((NR+nR)/[BR[)~ 
F(p) + F~2/2C. The method of attack incorporates the idea used in proving 
the L. L. Inequality that the partition function is only decreased if we 
restrict the class of functions over which the trace defining it is taken. To 
get a lower bound on Tr[exp(--/3HN+n,BR)] we will restrict to functions 
for which the excess charge particles n are contained in a spherical shell 
bounding, but disjoint from, the ball containing N. For an upper bound we 
will add particles in to neutralize the system and then restrict to functions 

for which the m particles are in a spherical shell about the N +  n par- 
ticles. 

Since nR/IBR[ ~ 0 there is ~R with ~R/R--*O such that nR/~RR 2 --+0. 
Let SR=BR\BR_~R. The analysis implicit in the proof of the L. L. 
Inequality shows that 

Tr[exp(-/~HN+ n,BR)] 

/> Tr[exp( --flHumR ~R)] �9 Tr[exp( -~H,,.sR)] e x p ( W )  (3.8) 

where ( W )  is the expected Coulomb interaction taken over the above 
traces. However, as N - E = 0  and HN, BR_~ is spherically symmetric, the 
earlier arguments show that ( W ) = 0 .  Furthermore, if ~ is any L](SR) 
wave function then Tr[exp(-~Hn,s~)]>~exp(-~H,,sRtp, 4,)). ~ can be 
picked so that it approximates a uniform charge distribution in SR as 
R--* oo. Simply let 0 correspond to charge clouds about the n particles 
placed uniformly around SR. Since nR/[SR[-~ 0 this can be done so that 
total kinetic energy (-A~R~k,~) is o(R3). Thus, (HnR.sR~h,~)= 
2C(QZ/IBRI2/3)+o(R3), the electrostatic energy of uniform charge dis- 
tribution on a sphere of radius R. [For more details see (1).] This, (3.8), 
and the fact that ( W ) =  0 show 

F R \  [BRI J"~ IBR[ FR ~" IB :,f +~--~\]BR[ / j +o(1) (3.9) 

Since 

IBR_ ~R] 

IBR[ 
/ N + n \ <  F 1 

For the lower bound, add some particles mR to neutralize the system. 
That is, suppose (NR + nR + mR)" E-- 0. Also, make sure that mR/[BR] -~ O. 
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Pick c~ R such that eR/R ~ 0  and mR/O~RR 2 --*0 and let SR=BR+~R'BR. By 
our restriction technique 

Tr[exp(--~HN+,+m,BR+,R) ] >~ sup ~ exp --~(Hu+~+,,q/j" ~, Oj" ~)(3.10) 
{Oj} j =  x 

where the supremum is taken over orthonormal sequences in L~+,(BR) 
and ~ELem(SR) is an arbitrary wave function. As with the upper 
bound, pick ~ to represent a uniform distribution of the ms particler 
in S R. The operator on Lz+~(BR) taking ~(x) to 
~'''~Slff [HN+n+mfP(X)  " ~(y)]  ~p(y)dy (see terms in the exponentials on 
right side of 3.10) becomes H N +  n + W ~  -}- Q~/2C IBRI 1/3 + o(R3), where W~, 
is multiplication by Ss, [q~,(y)/ix-Yl] dy and @~, is the charge density 
corresponding to ~,. The right side of 3.10 is the trace of this operator over 
L2N+,(BR). By our now familiar application of Peierl's theorem, we see that 

Tr [exp( - fl H N + n + m,BR + ~R ) ] / >  Tr [exp( - fl H N + n,BR) ] 

F x e x p ( W , )  + 1_2C IBRI 1/3 I- o(R3)] (3.11) 

In this situation, 

where q~R is the expected charge density taken over Tr[exp(-/~H~v+ n,8~)]. 
By our earlier analysis q~R is radial with ~B~ ~bR(x)dx = QR. By Newton's 
theorem, ~BR [~bR(X)/lX-- Yl] dx= QR/Iyl for all yeSR.  Hence, 
(Wo)=QR~s,  [~,(y)/lyl dy. Since, q~o approaches a uniform charge 
density as R-i-,ov, the explicit calculations at the beginning of 
this section show that ~sR [@o(Y)/I Yl dy ~ -QR/C IBRI 1/3 and 
( W, ) ~ -Q2/C IBR] 1/3. The minus sign appears because 
mR'E= --nR. E= -QR. (3.11) now becomes 

Tr [-exp( -/~HN +, + m,~+ ~R) ] 

>/Yr[exp( -- f lHN+n,BR)-]  "exp / 
L_ 2C IBRI 1/3 + ~ 

which has free energy form 

FR(NR + nR/IBR[ ) >~ IBR + =RI/IBRI FR + ~,R(NR + nR + mR/[BR + ~RI) 

+ Q2R/2C ]BRI 4/3 -[- o(R) (3.12) 
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As (N R + n  R + m R ) ' E = 0  and NR+nR+mR/IBR+~R[ ~ P ,  it is tempting to 
conclude that the right side of this inequality converges to the desired limit 
F(p) + 132/2C. However, we may be faced with the technical difficulty that 
for some i p i = 0  but n~+mier  Then FR(NI~+nR+rnR/IBRI) is the free 
energy density as we approach the point p ~ ~?E • A discontinuity in F there 
would mean that we could not interchange these limits and derive the 
desired conclusion. The situation p i=  0, rn~ +n~-r  0 occurs if the excess 
charge comes from the introduction of a new species of particles. The dis- 
continuity would mean that our theory predicts that these particles render 
some additional thermodynamic effect. Technically, it means that we do 
not have the lower bound necessary to establish the thermodynamic limit. 

3.4. The Grand Canonical Ensemble 

The grand canonical ensemble defines the pressure HR(#) by (2.2). 
Basic thermodynamics requires that this be related to the free energy den- 
sity by the Legendre transform: 

H(#) = sup {#-p - F(p)} (3.13) 
p 

This is what is meant in statistical mechanics by the "equivalence of the 
canonical and grand canonical ensemble." Notice that grand canonical par- 
tition function ~2N e ~" N Tr[exp(--~HN,SR)] is a weighted average over the 
various particle number vectors of the canonical partition function. The 
special character of the logarithm and properties of the free energy insure 
that the logarithm of this sum is close (in comparison to the volume) to the 
logarithm of the largest term. That is, 

(fl t BR] ) - -1  log ~, e ~ u Tr [exp( - flH N.BR) ] 
N 

:~ (/3 [BR])- 1 log max e fl#'u Tr[exp(--/~Hu, sR)] 
N 

= (/~ [BRI) -~ max {/~#" N +  log Tr[exp( --flHN, Be)} 
N 

= max {#' N/IBRI - FR(N/IBRI} 
N 

This is the mechanism behind the proof that the pressure limit exists and 
equals the theoretically necessary value given by (3.13). 

The key step in this approach is contained in Lemmas 7.3, 7.4, 7.5 of 

822/41/5-6-17 
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(1). The upshot is the existence of a constant M(#), monotonic increasing 
in #, for which 

e~UNTr[exp(--flHN, BR)]>.-'2 l ~ e~UUTr[exp(--flHu, aR) 
INI < M(,u)IBRI N 

That is, densities in a bounded set contribute a fixed proportion of the 
grand canonical partition function. Hence 

ep. �9 N Tr [exp( - flHN, BR)] 
IN[ < M(,u)IBR[ 

<~ 2 eBu'N Tr[exp( -- flHN,BR)] 
N 

<<. 2 Z e~"M Tr[exp(-/~HN,~.)] 
INI < M(/Z)IBRI 

(3.14) 

The maximum of all the terms in the sum obviously is attained in the set 
IN] <M(#)IBR[.  Combining this with (3.14) gives 

max { e ~uu Tr [exp( - ~HN,~R) ] } 
N 

~< ~ e ~ N  Tr[exp(--flHu,BR)] 
N 

~< 2[M(#)IBRI]Smax {e~UUTr[exp(--flHN.B.)]} (3.15) 
N 

On taking logarithms and dividing by volume this gives 

~R(/~) = sup {/~'p -- FR(p) } + eR(/~ ) (3.16) 
P 

where eR(#)= Slog M(#)]BRI/IBRI, which --'0 as R ~ oe. [-The maximum 
in the brackets in (3.15) is always attained at a lattice point N/[BR]. So, 
there is no problem in going from (3.15) to (3.16).] 

Since FR(p)~ F(p), the obvious tactic is to deduce from (3.16) the 
analogous limiting relationship as R--, oo. This would simultaneously 
prove the existence of the pressure limit and the equivalence of ensembles. 
Lebowitz and Lieb used their analysis of nonneutral systems to show that 
the supremum on the right side of (3.16) only needs to be taken over 
neutral p, i.e., over p e E • The neutrality lemma proved in Section 5 of this 
paper rigorously establishes this. That is, 

~R(#)= sup {I~'p--FR(p)}+eR(#) (3.17) 
p ' E = O  
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Operating under the assumption that the neutral free energy F R converges 
uniformly to F on every compact subset of E z (in particular, on the set 
I p l < M ( p)  where this supremum is attained), Lebowitz and Lieb con- 
cluded from (3.17) the desired limiting behavior. 

A proof of the continuity of F(p) at 0E • would make this argument 
fly. However, as I mentioned in the Introduction, the proof of the con- 
tinuity of F presented in this paper depends on two things. First, Feffer- 
man's independent analysis of the infinite-volume limit for the pressure ~ is 
uniform as some # i ~ - ~ ;  second, the equivalence of ensembles (3.13) 
converts this into a statement about F as Pi-~ 0. That is, to relate Feffer- 
man's analysis and Lebowitz and Lieb's analysis for the resolution of the 
continuity problem, we must know that (3.13) holds. Fortunately, (3.13) 
can be proved without the relying on the boundary continuity of F(p). 
Initially, I did this by showing that terms corresponding to N around the 
mean particle number N contribute a dominating portion of the sum. 
However, as a conversation with Lieb revealed, the fact that (3.17) implies 
(3.13) can be proved using only ideas implicit in Lebowitz and Lieb's 
paper. I will present this argument here. 

The reason that the problem at ~E • might prevent the convergence 
of supp.E=o{l~.p--FR(p) } to supp.~=o{~.p-F(p)} is illustrated 
graphically in Fig. 1. It represents F R and F along a curve in E • 
parametrized by Pi as p i ~ 0 .  Even though the limit F(p) is convex, the 

F(p i = O) 

lira 
FC p) 

p• 

FR( Pi ) 

Pi P 

Figure 1 
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finite volume Fn may not be. If Fn were "very nonconvex" then a sequence 
of "spikes" at points p~ ~ 0 could make 

sup {#'p--FR(p) } =# 'pR--FR(pR)>  C + # ' f - - F ( f )  
P 

= C+sup  { p ' p - F ( p ) }  
p 

When I presented Lieb with this possibility, he argued that the convexity 
implicit in (3.3) prevents such an anomoly. In terms of the picture, he 
reasoned that (3.3) should imply that some point on the graph of F would 
lie below the line joining limn ~ ~ [pn, Fn(pgn)] and Eft, F(f)].  This is the 
essential idea in the proof presented below. 

Proo[ o[ (3.73). First assume that supp { # ' p - F ( p ) }  is attained at 
some f ~ int(E• Since FR(f) converges to F(f) 

sup {#'p--FR(p)}  >~#' f - -FR(f)  
p 

= # .  f - F ( f )  + e R ( f )  

=sup {# 'p--F(p)} +sR(p) 
p 

with s R ( f ) ~ 0  as R ~ .  Hence, l imR~supp{p 'p- -FR(p)}>~ 
supp{#'p--F(p)}. The corresponding bound for the lira is more 
complicated. Assume to the contrary that there is a constant C>0,  a 
sequence Rg ~ ~ ,  and a sequence p, ~ p~ ~ 0E • with #. P k -  Fk(Pk) > 
C + s u p p { p ' p - F ( p ) } = C + # ' f - F ( f ) ,  There is ek with [ekl--+0 as 
k ~  oo for which Fk( f )+Sk( f )=F(f ) .  Hence, the negative assumption 
implies that #" Pk-- Fk(pk) > C + #" f -  Fk(f) + s~. Pick k large enough 
that ]ek] < C/2. The above inequality now gives 

Fk(f) -- Fk(Pk) > c/2 + #" (f  - Pk) Vk (3.18) 

Given k, there is large enough R,(k)  so that any ball BR with R > R,  can 
be packed with disjoint balls with radii contained in {Ri} ~= k in such a way 
that all but 1/k proportion of BR is covered. Assume that this is done with 
an even number of balls of each radius. Place density f in half the balls of 
each radius and density Pi in the other half of the balls of radius Ri for each 
i. Let Pk,R=~f.i~Z=k IU BR,[/IBR] P~ (Only finitely many terms will be non- 
zero.) By the L. L. Inequality 

FR Pk.R+'~f <~ ]BR-------~"2 [FR'(P~)+ FR'(f)] (3.19) 
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1 As k and R > R . ( k ) ~ o %  P k . R ~ P ~  and so ~Pk.R+�89189 
int(E • As FR converges uniformly on compact sets of E • away from 8E • 
the left side of (3.19) converges to F(�89 + ~)). Examine the right side. 
For each i, 

�89 + FR,(fi)] = I[FR,(pi) -- FRi(P)] + FR,(#) 

By (3.18) this is 
c 1 

~< -#+~g" (P~-- P) + FRi(#) 

c 1 
= - ~ + - ~ g .  (p~+fi)-- ,u ' f i+FR,(#)  

If we now average over Z•_k IU BRiI/[BR[ and let k and R > R , ( k ) - - ,  oo, 
we see that the limiting right side of (3.19) is 

~< -~+# - [#.  f i - F ( f i ) ]  

Putting this together with the limiting value of the left side gives 

a contradiction to the choice of # as maximizer. 
If supp{p-p-F(p)} is not actually attained, but equals 

l imp~c~L.~{p 'p~- -F(p~)  } then the same arguments work by picking 
#Ein t (E  • which gives a value # . # - F ( # )  arbitrarily close to the 
Supremum. | 

3.5. Explicit Low-Densi ty  Calculat ion of the Free Energy 

A corollary of this section is that F is continuous at p = 0. This a priori 
knowledge will simplify the proof given in Section 5 of continuity at 
arbitrary other points p e OE • 

Standard calculations of the free energy per unit volume of a com- 
pletely ionized ideal gas of electrons and nuclei give the low-density 
asymptotic form fl--~ Z~-~p i ln  Pi. For the neutral systems that we have 
been considering, Lebowitz and Lieb's methods can be used to prove 

F(p, fl) = fl 1 pi In p~ + 0 p~ (3.20) 
i = l  i 1 

[-where O(5Z~= 1 Pi) depends on fl]. 
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Lebowitz and Pena dealt with this in Ref. 4. Owing to a technical 
oversight, they actually only proved 

i = l  i = 1  

~< F(fi, p) 

~<fl 1 p~ln Pi + 0  p~ (3 .21)  
i = l  i 1 i 1 

Notice, however, that even the weaker (3.21) is enough to establish con- 
tinuity of F at p = 0. 

The lower bound in (3.20) is easily derived from the stability of matter 
inequality mentioned at the end of Section 3.1 and bounds on the ideal 
Fermi or Bose gas partition functions (Fisher (1964)). I will modify 
Lebowitz and Pena's method to establish the necessary upper bound. 

Lemma. There is k(el,...,es) so that if Z~i=lNi'ei=O and 
Z~=~N~>k(e 1 ..... e~), then N = N ~ + N  2 with N ~ ' E = N 2 " E = O  and 
N1 :/: 0, N2r  

ProoL Given e i<0,  es>O let ko=min{k ,+kj>Olk ,e i+kje j=O }. 
Let k=maXe,<O.e;>o{kij}. Notice that each k u can be written ku=k~+k j 
and so k can be written k=kneg+kpos. Let e=maxe,<O, ej>o{lezl/es+ 
ejle,I }. Suppose Z~= 1 Ni > s. e. k with Z~= 1 N~. ei = 0. Then, Ni > kn~g 
for at least one i with e~ < 0 and Nj > kpos for at least one j with e s > O. 
Let N 1 consist of k~ species i particles and kj species j particles and let 
N 2 = N _ N  1. 

Corollary. The N particles can be divided into at least M =  
(Z~=I Ni)/k(el ..... es) neutral "atoms" A1,..., A M, each with <~k(el,..., es) 
particles. In general, many of the atoms will be identical. 

Pack .(2 with M balls B1 ..... BM of equal vo lume~[ f2 i /M= 
cIs~l/(ZT= t Ni). The L. L. Inequality applies to give 

M 

Tr[exp(--flHNs ] >1 [I Tr[exp(--flHAjB)] (3.22) 
j = l  

This inequality can be strengthened to 

M 

Tr [exp( - f lHu ,a ) ]  ~> I~I (CM)N' 1-[ Tr[exp(--f lHa:&)] (3.23) 
i=l \ Ni /I j = l  
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for the following reason. Recall that the L. L. Inequality in the form (3.22) 
is obtained by restricting the wave functions over which the trace is taken 
to have their supports in the union of the statistically dependent per- 
mutation copies of X~= 1 XT_ 1BA~=sc f2  :cNi. If two atom A j, A k with 
A j 5/= A k interchange baiis - J" " ' then this gives rise to another subset S' of ~:~ Ni 
disjoint from S. Denote those L2N(g2) functions with supports in S and S' 
by L2(S) and L 2 ( S ' ) ,  respectively. The disjointness of S and S' implies 
orthogonality of L2(S) and L 2 ( S ' ) .  The number of mutually disjoint sets S 
clearly dominates M!/NI!"" Ns !, which dominates [I~= 1 (Cm/Ni) ui. (3.23) 
is obtained by adding the traces taken over the associated mutually 
orthogonal L2(S). 

Now deal with a given Tr[exp(-flHaj.B)].  Here I mimic Lebowitz 
and Pena's paper. (4) First, divide the individual particles of the atom A j 
into disjoint subballs of B~, k 1 ' = ,...,Zi=aA{, with equal volume 
~CIOI /M (i.e., one particle per subball). The L. L. Inequality applies 
again to give 

Tr[exp( - flHAJ, Bj) ] >1 I-[ Tr[exp(CflA 1,B~j ) ]  . e x p ( W )  (3.24) 
k 

It is easily calculated that after taking logarithms and dividing by volume 
the Coulomb term ( W )  gives rise to an additional quantity of size 
O((Zpi)4/3), which from the point of view of (3.21} is negligible. By 
elementary eigenvalue asymptotics for A~ we see that 

Tr[exp(CflAl,~)] >1 Cf1-3/2 IBfl ~C~ -3/2 It21/M (3.25) 

Modulo the negligible Coulomb term this gives 

Tr[exp(-flHA:,Bj) ] >1 (I  (C I~[/M) A1 
i=1 

and hence from (3.23) 

Tr[exp(-flHu,~)] >>* (1 (C IOI/Ne) ui 
i=1 

Take logarithms and divide by ~'1OI to obtain (3.21). 

4. F E F F E R M A N ' S  A N A L Y S I S  OF THE PRESSURE L IMIT  

In Ref. 3 Fefferman proves that the infinite-volume pressure limit 
exists for a quantum mechanical system in which the nuclei are fixed on a 
lattice. Because the lattice system lacks the rotational symmetry to discount 
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the Coulomb interaction between disjoint neutral balls, the method of 
Lebowitz and Lieb does not work for this system. Fefferman develops 
powerful and general techniques for comparing the real Hamiltonian to 
one in which we neglect the interdomain interaction. This analysis carries 
over to the case of quantised nuclei, where it simplifies considerably. 
Except for minor modifications convenient for the resolution of the discon- 
tinuity problem, the following is a straightforward application of Ref. 3 to 
the case of quantized nuclei. 

4.1. Qual i ta t ive  P r e v i e w  

The essential ingredient in Fefferman's analysis is the following. 

Fefferman's Inequality. There is a constant k(p, fl) with the 
following property. If 1 ~< Rz < R 2 " '  < RM is any sequence of radii with 
R ~ + I > 2 ~ R i ,  there is R,(M, RM) (,~CM4/3R 4) such that if 
R > R,(1/M, RM) then 

N i = l  

where C ~  (1/M)(IBRI/IBR~/)is the number of balls of radius Ri used in a 
special covering of BR. 

Notice that if the sums are restricted to neutral N then the L. L. 
Inequality applies to give (4.1) in the opposite direction and without 
exp[k(p, fl)/M] IBRI). The two approaches complement each other in this 
way. If the logarithm of both sides of (4.1) is divided by fi [BR] an 
inequality relating the pressure results: 

_< k(p, fl) 1 ~ HR,(It ' fl) (4.2) 
i =  1 

As fiR(It, f l )> 0 for all #, fl, R, limR~ ~ fiR(it) exists. When applied to a 
sequence R, for which fiR,(it) approaches limR ~ co fiR(it), (4.2) allows us to 
conclude that limR ~ co fiR(it) = limR -+ ~ fiR(it). 

The special covering needed for Fefferman's Inequality is given by the 
Covering Lemma in the next section. We will deal with a family of 
coverings {itT,~} depending on a parameter z corresponding to uniform 
translations of the sets in a particular covering {u~}. Fefferman defines a 
"phony" system in which these sets {u~} are Feated as disjoint independent 
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subsystems. The phony Hamiltonian HPhe R does not include any Coulomb 
interaction between different u~. Because of the independence of these sub- 
systems, the grand canonical partition function for H~vh,~R factors as a 
product of those for the u~. (4.1) is an approximation to this factoring for 
the real system. To get it, Fefferman relates HN.BR to an average over trans- 
lations ~ of the HPh'~V.BR corresponding to different coverings {u.~}. 

4.2. Details 

The number (Ci) of balls of each radius Ri used in the special covering 
of BR is approximately (1/M)(IBRI/IBR,]), where M is the number of dif- 
ferent radii. This means that the proportion of volume of B R covered by the 
balls of a given radius R~ is approximately 1/M. This requirement is impor- 
tant for the comparision of HN, SR and avg, H ph'" mentioned above. I will N,B  R 

postpone the proof of the following until its technical importance can be 
better appreciated. 

Covering Lemma. Let {R~}i~=ll be real numbers with 
R~>2 ~ Ri_ 1. Disjoint balls of radii {R~}MI can be packed into ~1~ 3 in 
such a way that if BR has sufficiently large radius R then 
1/(M+ 6)~< I(J BRi~BRI/IBR[ <~ 1 / (M+ 5)V~. As usual, (J BRj denotes the 
union of the balls in the packing with radius R~. 

Apply the Covering Lemma with R1 > 1. We can complete a covering 
of N3 by including slightly overlapping cubes. First, decompose R 3 into a 
grid of disjoint unit cubes. Then, enter into the covering the double of any 
unit cube which intersects the complement of the balls already in the 
covering. Call the sets in this covering of R3{u~}. That is, a given u~ may be 
either a ball or a cube. Notice that Z~,,t,~s ~,~ lug, n BRI/IBe[ <~ C/M. There is 
a partition of unity 

Z qs~ = 1 (4.3) 
7 

for which each function q5 has its support contained in its corresponding 
u~. Assume that it is constructed in the following way: 

1. For each radius Ri, there is a smooth radial function qsi supported 
in BR~(0), indentically 1 on BR,_I(0), and fc~xOsil ~<Cfor I~1 ~<3, so that if 
u~, = BR(y  ) then q~(x) = qSi(x - y). 

2. If u s is a cube then assume that 13~qs~t ~< C for ]c~[ ~< 3. 
We are now in a position to define the phony system. 
Let B R be a large ball on which our system is defined. Consider only 
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those u~ which intersect B e. As mentioned earlier, we treat the u~ as dis- 
joint. This is accomplished by taking an "exploded" view: to each ur which 
intersects BR correspond a vector r e ~3 in such a way that the u 7 + r ~ u~ 
are all disjoint. The Hilbert space for our phony system is L2N(U u~). The 
phony Hamiltonian acting on L~v(U u~) is defined by 

R 1 elej 

i , j ,k,l  

(4.4) 

where ~ denotes the sum over all those u 7 which are balls and which inter- 
sect BR and where )~T is the characteristic function of the set u~. It takes 
into account the CouJomb interaction only between particles in the same 
ball u~. 

Because the u~ are all independent in the phony system, the partition 
function decomposes as a product of the partition functions for the u~: 

e e~' 'v Tr  [ e x p ( -  flH~vhsR) ] 
N>~O 

cubes u~, 
s.t. ur c~ BR r f2~ 

e ~"N Tr [exp( - flA N,,,) ] } 

X{'~I~(N~>~oe~U'NTr[exp(--flHN,,.)])} 

~explC~(~Y) lBRl]X{'I-I~(N~oe~NTr[exp(--flHs,, ,)])} (4.5) 

where I-I~ has meaning analogous to Z ( .  We have used (3.7) with 
cl(fl, 1~) = ch(fl, #) and the fact that ~cubes,, lU~ n BRI/IBRI <~ C/M. 

Fefferman's Inequality results from a comparison between the left side 
of (4.5) and the same quantity with H~VhBR replaced by HN, BR" The first step 
is to pull H%h, eR back to an operator on L2N(BR). The partition of unity gives 
rise to an injection i: L2(BR)~L2N(U u~) that accomplishes this. Any 
y e U u~ is uniquely expressible as y = X +  r for some Xeu~. Extend 
any r e LZN(BR) to be zero outside B N and define ir ~ L2(U u~) to be 

ir { ,..., y~,) = #t(X l N, ~I Ni ..... Xs ) 1-[ r  
i ~ l k = l  

(4.6) 
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where y/k = X~ + ~ k ~(y~). ir clearly satisfies the correct symmetry 
requirements if r does. Check that the inner product is preserved: 

f(u4""f~ ir ~(...yf---) 49 

= y,  [ . . . f  i t )( . . .yf , . . )- f~( . . .yf . . . )d~ 
, I N s ~ 
}~1 ' " " Y s  Ut lX . . .XU~N~ 

Yl Ys ~ 

where the sum is over all S~ ~ N~-tuples of the 7 in the indexing set of the 
u~ (i.e., of the u~ which intersect BR). The above equals 

I N i  

' " "  ' --- , s Y l  7s u y [ x  
)s 

Because supp(q~)= #7, this equals 

s N i 

�9 . 2 k 

As Zy ~b~(X~) = 1, this equals ( r  ~b)L~(~R). Note that i is definitely not 
onto. This is because each ir satisfies a compatibility condition due to the 
fact that one point x e BR can correspond to more than one point in U u~. 

This injection pulls HPhsR back to an operator H iN,BR = i*o HP~B, R ~ i 
acting on L2N(BR). Since i maps orthonormal sequences {r C L2N(BR) 

H i to orthonormal sequences {itpk}=L2N(UU~) and ( N,B.0,r 
(H~hBRr r  the definition of trace as a supremum gives 

Tr [exp( - flH~c, BR) ] ~< Tr [exp( - flHPhsR) ] 

Summing over N and using (4.5), we obtain 

~, e ~u" N Tr [exp( -- fiH~N.BR) ] 
N 

R 

l t47, 
Suppose that we now translate each set in our covering {u~} of ~3 by a 
fixed vector v e ~3. Call this translated covering {u~,,}. It givesrise to a dif- 
ferent collection of sets which intersect B R and a different partition of unity 
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Y,~ q~2,~(x) = E ~  ~ 2 ( j f _ z )  1. Hence we obtain a different Hilbert space 
L2N(UU~,~), a different injection i,:L2N(BR)~ 2 L~v(Uu~,~), and a different 
operator H ~ =; ,ot4ph, ,  o; (4.7) still holds with H ~ and {u~,~} N, BR - -  ~'c ~ N, BR I"c" N, BR 

replacing H i and {u~}, respectively. Notice that for any z e ~3 the quan- N, BR 

tity on the right side of (4.7) depends only on the numbers of balls of each 
radius Re in the covering {u~,~} that intersect B~. By the covering lemma 
this differs from the c~ in the statement of Fefferman's Inequality by 
O(1/M2)(IBRI/IBR,I). We absorb this in [c~(fl,#)/M] IBR]. Therefore, 
independently of z, the quantity on the right side of (4.7) is 

<~exp lCl(~l#----'---~) }BRI l " i~_ l {u~>~o efl~N TrEexp(-- flHu,BR) ] } ~ 

Now, for some large ball B d define the operator H ~  B, = avg~ H ~ , ~ Bd N ,B  R" 

That is, for ~ ~ L2N(BR) # ~' HN, B~r = (1/IBal) ~B, ~ * HN.BR~(...Xi ...) d'c. An 
elementary calculation (using 2ab <~ a2+ b 2) shows that for operators A, B 
acting on the same Hilbert space, Tr{expE�89 + B)] } 
� 8 9  as long as both sides are well defined. This 
inequality generalizes to continuous averages. When applied to operators 
H ~ it gives N, BR~ 

# e e"N Tr [exp(--flHN, BR)] 
N 

ECl(fl, #) c, 
~< exp L ~  IBR]] e=l f i  {U~>~O e~NTr[exp(-flHN'BR')]} (4.8) 

The major effort in Fefferman's analysis goes into proving the follow- 
ing theorem. 

Main  Theorem. In the above setting, if the smallest balls in the 
covering have radius R 1 > Rmi n and if the ball Be over which translations z 
are averaged is large enough, then H e ~< (1 + C/M) HN, B R+ N, BR 

(C/M) Zs= j Ni, with C independent of R and N. 
Let e = C/M and let g be the s-tuple g=  (e ..... e). Plugging the Main 

Theorem into (4.8) gives 

ee(U ~). N Tr { exp [- - fl( 1 + e) HN, BR ] } 
N 

exp[cl(fl, l~)elBR[] ~=1 ~ e~"NTr[exp(--flHN'BRI)] 
i=  N>~O 

(4.9) 
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Claim: 

e~U . u Tr [exp( - flHN, BR)] 
N 

~< exp[c2(/~, #)e [BR[ ] Z e~("-g).N Tr{exp[ --/~(1 + e) HN, BR ] } 
N 

Once this claim is proved, (4.9) gives 

E e~'N Tr[exp( --flHN, BR)] 
N 

M 
~< exp{ [cl(/~, 12) + c2(fl, #)] - e. IBRF } - H 

i = 1  

}c x e~"NTr[exp(--f lHN.BRi)] (4.10) 
0 

(4.10) is Fefferman's Inequality with e = C / M  and k(/~,#)= 
c1(/~,/~)+c2(/~, #). When we discuss uniformity o f  the convergence of 
HR(/~,/~) to H(#,/~) in Section 5 we will consider cl and c2 more closely. 

Proof  o f  Claim. Notice that 

1 
- -  log ~ e ~(" e).N Tr{exp[ --fl(1 + e) HN,BR ] } 
/~js,~f N 

= g ~ ( u -  ~ , /~(1  +~)) 

As is easily checked by examining its derivatives, HR(/I, fi) is convex in 
both # and fl for each R. Estimate (3.7) shows tha t / /R  is bounded above 
by the free particle pressure. Like the free energy density lower bound 
h(#, fl), this bound can be calculated and shown, independent of R. As 
HR(#, f l ) > 0  for all #, fl, R also, the convexity implies that HR(lz, fl) is 
uniformly (in R) Lipshitz on bounded #,/3 sets. Hence 
]HR( # -  g, fl(1 + e))-- HR(p, fl)] ~< c2(P, fl) e.. Multiplying by fllBRI and 
exponentiating gives the claim. | 

Since (8/8#~) HR(#, fl) > 0 everywhere and lim~,_ ~ (8/@~) 
HR(#, fl) = 0, convexity implies thai the c2(#, fl) is uniform for the #~ boun- 
ded above and fl in bounded sets. This will be important in Section 5. 

4.3. Proof  of  Ma in  Theorem 

Recall what needs to be proved. For each T e ~3 we have a covering 
{p~,~} of B R defined by the Covering Lemma, an associated partition of 
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unity Y,~q~2,=I given by (4.3), an injection i~:LZN(BR)~L2(Uu~,~) 
defined by (4.4), and the pullback of H ph,~ to an operator N ,  B R  

H'u,~-= ;* o t4p~,~.c *'N, BR ~ ~" on L~N(B~). For some as yet unspecified large d, we 
defined the operator H~N,~ ---- avg~ ~ ~ Hu, n . "  For d large enough we want to 
prove 

< N, BR0, O>~< 1+  <HN, B R 0 , 0 > + ~  r N, < 0 , 0 >  (4.11) 

for all 0 e L2(BR). 
Temporarily fix a z and suppress the framework's dependence on it. 

We have 

O-C ( N,m,~, ~b ) = <HPh, BRi~, iqt >, #1 e L2N(BR) 

ph HN, Ba has a kinetic energy term and a potential energy term. First handle 
the kinetic energy term: 

( - -AN,  Uu~(iO) , (iqJ))= ~ IIVN(i~)ll2~(u~{,..u~5 ) (4.12) 
1 N s 

)~l,'",Ys 

Recall that ir Xf + r --- ~( .... X~,...) fI~=l 1-[NL, ~bT~(X~). Use the 
trivial equality (proved by integration by parts) I[V(~(x)~k(x)l122 = 

]q~12-~ q~A~. Iffl 2 to see that (4.12) equals 

z I f  n (i 
I N s �9 

y l , . . . , y  s B ~  R ~ = 1 k = 1 

- E E " ,~#(x~) +r  
i= 1 k = x @...,y,, BRu (y,t) (i,k) 

• 10( . . . x f . . . )L  2 dxf,. . .ax~s 

If we take the sums inside the integrals and use the fact that 2_  Z~ ~7 - 1, we 
see that this equals 

N i  

= }IVNqII]LN(B,) 
i ~ l  k = l  y /~R 

• Iq,(..., x k,,...,, ~ ax f , . . .ax f s  
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By the antisymmetry or symmetry of 0 in each variable, this equals 

[]'TNOII2L2N(BR)-- i=1 ~ Ni f's R" f[~y ~ Y ( Y ) A ~ y , y ) J  [0( .... x'/N~-I 1, Y, Y~/,.--)] 2 

x dxl...dxJ...dx N, dy (4.13) 

Hence, we see that the kinetic energy for the phony system equals that for 
the real system except for an error corresponding to the expected particle 
density in the support of Z~ r i.e., where multiplication by ~b~ 
changes the derivative of 0. 

Now, average (4.13) over translations ~ in some ball Be(O). The only 
change is that Y,~ q~7(y) Aq~(y) becomes l Be] -- 1 ~Bd ~'~2 q~(Y + ~) 
AqSy(y + ~)dr. Except for an error O(1/d) coming from u~ at a distance d 
from y this equals 

]Bd]-I ~ f q~Aqb~dx (4.14) 
y s.t. 

The properties (4.3) of the q57 allow us to estimate (4.14). If u~ is a ball of 
radius R~ then 

f q~,Ag,,dx = f q~(x) J~,(x) dx BR i 
Since ~bg-= 1 on BR,_ ~ and IA(I)il < C by assumption, this quantity is 
<~CR~. The number of balls of radius Ri which intersect Be(y) is 
<~ ]Bd[ [BR~]-1 [1 / (M+ 5)]. Therefore, the part of (4.14) corresponding to 
balls has total contribution 

<-..]Bel 1 ~ IBe[ IBR,] -1 CRy= 2 CR? ~ 
i=1 i=1 

Since Ri+ l>2Ri ,  R I >  1, this is <~C/M. (The constant C has of course 
changed in each line of the inequality. It can be taken as 10.) As the first 
three derivatives of the 05 for cubes u s are bounded, they contribute 
something bounded by their proportion of the volume, i.e., by C/M. Hence, 
tBd[ -1 IBa ~F_,~, q~(Y + z) A~7(y + z) dz <~ C/M. As long as d is large enough 
to make the error O(1/d) at OBe(y ) negligible, we can plug this into (4.13) 
to get the kinetic energy part of H e ( N,~R0, 0> equal to ]]VOI[~(~R) modulo 
an error C/M(E~= 1 Ni) < 0, 0 >. 
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The potential energy term in (HNe,~R~, ~ ) is more complicated. For a 
given {HTv, BR~0, r ) it is 

( ( ~ 1  eiej ~ I 
~ . ~ , ;  IX/~ _ x S i ]  

(i,k) ~ (j,l) 

f ~ f 1 eiej ~I H 2 k = " " -~ Y~ ; - - t  ~ , (~ (X~ +"c) 
g,g~uT, I X i  - -  X ;  I i = l  k = l  

(i,k) ~ (j,~) 

x I0( .... g~,  ...)12 dxl...dX~ 

f ~ f { ~  V [ eiej ~ 2 k ]} = , t , ( x } + , )  �9 �9 r +'c) z z 
, ~ i l  X T X ~ l  

(i,k),=/=(j,l) L I  i j~ y 

x IO(,.,gk...)l ~ dxl ...dX~s 

where Z f  ,~ is the sum over all those y for which u 7 is ball with 
{uT+r } c ~ B R r  For k ~ defined on R 3xR3 by k~(x, y ) =  
[x-y[-lZ~,~@~(x+r)q~(y+z), this quantity can be written 
(�89162 ~,). Now average k ~ over a huge ball Ba(0). This 
yields a potential 

k#(x, y) = ISdl-1 ~ k~(x, y) dr 
~B d 

dr 
d y 

If I x -  Yl > 2RM this quantity is zero. If Ix - y[ < 2RM, then, except for the 
error O(1/d) as with the kinetic energy term, 

I 1 + ( 1 ) ] ~  ~b~,452 = ~ 0 ~ Ix-yl -1 ' Ri(x--y) 
,= 1 LB~,I 

A potential k(x,y)=k(x-y) gives rise to an operator V[k] 
on LZN(BR) analogous to the Coulomb interaction operator: 



Thermodynamics for Coulomb Systems 1003 

V [ k  ] g,( .... X q  1 . .  k i ,...) = ~ Y',(i,k), (j,t) eteyk(Xi -- XJ) ~k( .... X~,...). In Ref. 3, Feffer- 
man analyzes in detail the operators V[k] associated with certain 
"Coulomb-type" potentials k. The simplest examples of such potentials are 

~ --1--1~] v those kE C3(~ 3) for which c~ k(x)/Sx~ .~. C Ix[ [c~l ~< 3. For such k, he 
proves that V[k] <. C(HN, sR + C Z~i= 1 Ni) as operators on L2N(BR). This is 
given in Lemma 4 of Section 3 of his paper. (3) Lemma 4 actually 
establishes the inequality for a more general k satisfying 

]8~xk(x)l<~C~[x] 1-1~l for ] ~ [ ~ < 2 a n d a l l x  
(4.15) 

and [0~k(x)[ ~< C3 Ix[-4 for Ic~[ = 3 for all x expect possibly 

those in one of the annuli Ai=BR,+I \BR,_  1. Here R1, R2,... may be any 
sequence satisfying Ri+ 1 >t 2R~ and R1 ~> 1. Since the proof is rather long 
and detailed, I refer the reader to Ref. 3. We will apply this result to prove 
that V[k # ] <~ V[[xl--1] + (C/M)(HN, sR+ Z~i=I N~). 

Ix] --k#(x)~ i=1 Ixl 1 __ ~ 0 " ~  [Xl -1 i=1 ~YRJ- (X) 

>~-~ Ixl ~ + ~ l x l - 1  ~=1 1 -  IBR, I (x) (4.16) 

Let us examine the potential Ix[- 1 S ~ 1  [1 - (q~ �9 gS~/[BR~] )(x)], which we 
denote /~. As is easily calculated, [0~(~b~, ~/tBR~[)(x)[ <~C/R! -cq+l for 
[~[ ~< 3 except when [~1 = 3 and x the annulus B2R,+ 1\ B2R,_ 1, where it only 
satisfies [8~(g5~, ~/[BR,[)(X)[ ~< C. [To see this, write ~ = XB, * ~b for 
some (b ~ C~ [BI(0)]  and notice that (1/]BR[) XBR * XBR(X) = 
Xs~ * XB~(X/R).] This means that/~ satisfies the assumptions of Fefferman's 
Lemma 4 on Coulomb-type potentials. However, since we have to sum 
i =  1 ..... M, the constants C~ in (4.15) are proportional to M. For example, 
for large x, kz(x)=MIx[ 1. This will give a bound on the order 
CM(HN, sR + X~= a N~), which is clearly not good enough. 

Since k may be replaced by - k  in (4.15), the lemma in Fefferman's 
paper gives both an upper and lower bound. We only need to prove the 
lower bound V [ [ x [ - 1 - k  # ]  ~> (C/M)(HN, B~+y, si=I N~). The potential 
~ : = ~ M  1 ~ 2 .  1~IX[ * crp~ has the same quantitative behavior as /~, Let ~c~ 

and ~ be the ith terms of/~ and if, respectively. Using what we said above, 
it is easy to see that 

c~(,~i_+ ~c~)(x) = 0 if Ix[ > 2Ri, V~ 

c 1 
~<R~ [X[ ]~1+1 if Ix[ ~<2R~ 

822/41/'5-6-18 
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and I~1 ~ 3 except when I< = 3 and Ixl E ( 2 R ; -  1, 2R~+ 1), where it is only 
bounded. Since R1/> 1 and Re+l > 2R~ this implies that ~__/7 satisfies Fef- 
ferman's generalized Coulomb-type potential assumptions. His Lemma 4 
applies to show 

V[k-+" ~ ] ~ C  (HN, BR+ ~ Ni) (4.17) 
i=1 

where now C is independent of the number M of different radii. 
Now, notice that V[/~] has the special feature that it is within an error 

C(Z~= 1 Ni) of being a positive operator. Consider the ith term: 

V[ff,](..., X~,...)= ~ eiejq)~ �9 1 

:t3::![~e,crp~(u-X')l[~efrp~('-X"]'u-'l -'dudv 

- -  ~ e 2 f .  . . f  dual) 
i,k R 3 x ~3 

By elementary potential theory (actually the fact that - A  has positive 
spectrum) the first term is positive. The second term is easily calculated to 
have absolute value (C/Ri) ~= 1 e}Nj. If we sum over i = 1,..., M and use 
the facts that R1 ~> 1 and Ri+ ~ > 2Ri, we get 

VIii ~> -C s N, (4.18) 
i=1 

Now combine (4.16), (4.17), (4.18) to get 

VFlx1-1] - VEk~]>--~ VFIxl '-I + mC V[~-1 

C _1.1 C VE~c.1 c V[~-k.1 = M 2 wElxl +~ +~ 

C 1] C t s  1 C (  ) >~--~ V[tx I Ni----- ~ HN,BR + s N, 
�9 = i=1 

>/ -- ~ HN, BR + C Ni 
i=1 

as desired. | 
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Proof of Covering Lemma. Let R 1 .... .  R M be radii with R~ ~> 1 and 
Ri+l>~2x/-3Ri. Let Q be a cube with [QI>2M21BR,I and let 
c~ [ [QI  IBR, I ~/(M+6), IQI IBReI 1/(M+5)J.  I claim that O can be 
placed with c~ balls of each radius Ri so that all the balls are disjoint. Prove 
this by induction. Assume that c~ balls of radius Re have been packed into 
Q for i = M  ..... j +  1. Let f 2 2 = Q \ t ) ~ j + 1 u B R , .  It is enough to show that 
1/(M+ 5)" IQI" IOJl -~ proportion of the volume of f2 j can be covered by 
disjoint balls of radius Rj. For since IQ[ >2M2 IBR~I we can adjust the 
number of balls to put ce in the proper range. As tfU[ = 
I O l - Z  ~ - ,=j+tcelBR, I >1 IQI [ ( j+5) / (M+6)] ,  1/(M+S).]QI.If2J[ ~ <~ 
( M +  6) / (M+ 5). [1 / ( j+  5)]. Using the notation f2~= {x IIx-O0~l >d}, 
we must show that I~?~@/It?Jl >1 (M+ 6) / (M+ 5) 1/( j+ 5). (Recall the 
discussion of Lebowitz and Lieb's packing in Section 3.1.) Let the side 
length of Q be denoted by l: 

.,W 

](2Jt<~[ 3 -  ~ c~IBR,]<~I 3 
i = j +  1 

i =  1 M + 6  

1 13 [BR~I_ , ]BR, q _ ~ R j l  
i = j +  1 

l M + 5  i=j+l RiJ J 

The necessary inequality is 

M + 5  M + 6  1 i=,]+ 1 

j + 6  ~ > M + 5 j + 5  
M + 6  

(4.19) 

Elementary calculations show that R i + I > 2 . , ~ R  e and l>MRM give 
(4.19) for all j = 1 ..... M -  1. The case j = M is trivial. 

Now decompose N3 into disjoint cubes Q of side length l. Pack each 
with ci balls of radius R e for i=  1,..., M so that all are disjoint. Then 
for large R (say, R~cl4), the number of cubes which intersect ~BR 
is <~c(R2/lQt]). Hence, IU BR~c~ BR]/IBRI <~ 1/(M+ 5) + [1 / (M+ 5)] 
IQzI/IBR[ cR2/lO,I <~ 1/(M+5)(1 +c/R). Similarily, [U BR,BRI/IBR[ >>- 
1 / ( M + 6 ) ( 1 - c / R )  and the lemma is proved. I 



1006 Hughes 

Notice that the R,(M, R,,) in Fefferman's Inequality can be taken as 
cl 4= c(M2/3Rm) 4= cMn/3R 4. This can certainly be improved. For  the pur- 
pose of Section 5 (and hence of this paper) any crude but definite value is 
sufficient. 

5. C O N T I N U I T Y  OF F(p) AT dE • 

In Section 5.1 I will show that lim R ~ o~ FIR(u) is uniform as some com- 
ponents ui-~ - - ~ .  In Section 5.2 I will show how this resolves the problem 
at vanishing particle densities. 

5.1. Un i formi ty  of l i m R ~  HR(p) 

The proof combines the L. L. Inequality and Fefferman's Inequality in 
the manner indicated in the comments after the statement of Fefferman's 
Inequality in Section 5.1. For  this to work, we need to work with neutral 
N. 

Lemma~-(Neutrality Lemma). Let #n=maxe:<0{ktj,  0} and 
#p = maXei>O {#i, 0}. Then 

2 efl'u'N Tr [exp( - finN.B, ) "] 
N 

<~ k(#, fl, R) ~ er BR)] (5.1) 
N'E=O 

where (1/[BR[)Ilogk(#, fl, R)I <--.c(#, fl)/R2+ (#2+#2)/R2 and c(#, fl) is 
uniform for all #i < const and/~ > const. 

Proof. Assume e 1 < 0, e 2 > 0 ,  # n  "=-- #1, and #o = #2. By dividing HN.BR 
by el,  we can assume e 2 = -1 .  The lemma is proved by associating to each 
N e Z  s >/o a unique neutral N and then estimating the contribution coming 
from all terms corresponding to a given neutral N by the neutral term itself. 
Let N~Y_ s If N ' E = p > O  then [N+(p,O,...,O)]'E=O. In this case, />0" 

associate N with N +  (p, 0 ..... 0). If N- E =  n < 0, then for q the least integer 
greater than n/k and p = q k - n ,  IN+ (p,q, 0 ..... 0 ) ] ' E = 0 .  In this case 
associate N with N +  (p, q, 0,..., 0). Now assume that N" E =  0. For  p ~< N1, 
we can estimate the term in grand canonical partition function 
corresponding to NR= N - ( p ,  0 ..... 0) by the one corresponding to N. By 
the analysis leading to the L. L. Inequality we can put p electrons in the 
domain SR=BR+I\BR and the other N - ( p ,  0 ..... 0) particles in B R and 
obtain 

E exp{--fl[(HNo,BR@n, I~tn) + W(@n, I]1)-~- (Op,sR , r t~/)] 
n 

~< Tr[exp(--flHN,~R+l)] } (5.2) 
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where {~}  are the eigenfunctions for HNO,BR, tp is any statistically correct 
function on S~, and W(O., ~) is the Coulomb interaction between the N p 
particles defined by #,~ and the p electrons defined by ~. Peierl's theorem 
tells that (5.2) dominates 

Tr [exp(--fiHu, mR)] .exp(--fl(Hp,sR, tp, ~> -- fl( W)]  

where < W) =5e.  5 [r ~bs.(y)]/Ix- Yl dxdy for ~bs. the average 
charge density taken over the ensemble Tr[exp(-flHu~e.)] and ~bs. the 
charge density arising from the as yet unspecified ~. We know that ~b~R is 
radial and ~B. q~B~(x) dx = p. This means that for each y e SR 

p 
I x -  yt 1 dx  = ly-  

Now pick ~ so that exp(--fl(Hp,sR, ~, O ) - f l ( W ) ) i s  reasonably large: 
Place p uniformly around the sphere BR+I/2 and define ~li(y ) = ~ ( y - - Y i )  
for some C~(SR) radial function ~ i> 0 with f 1~12= 1. Assume ~'s support 
is chosen small enough that the supports of the Oj are mutually disjoint. 
The function 

1 
~/(X 1 ..... Xp) ~-" ~. F~Hp ( -  1)sgn 6, ~lB(1)(Xl)...~lB(p)(Xp) 

is antisymmetric on S~ and has L 2 norm 1. As is easily checked, 
(--zl~t, ~)  ..~ p5/3R-4/3. Also, ~'"~s~ ~" Vp~dXl""dxp = �89 

~(p/R). Also, ( W )  = -p2/(R + �89 -p2/R. It follows [Yi- Yjt 1. 41 2 
that exp[---fi((Hp.sR~', ~ ) +  ( W ) ) ]  ~> exp[~(p2/2R - pS/3/R4/3)] >7 
expLB(p2/3R)], which shows 

Tr[exp(--fiHu;,BR)] <~ exp[-fl(p2/3R)] Tr(exp(-/~HNm~t,)] (5.3) 

In an analogous way we can deal with the case in which nuclei must 
be added to neutralize the system. Define NP'q=N-(p, q, 0 ..... 0). For 
0 < q < N  2 and O<~p<min{e2, N1}. As with the electrons needed to 
neutralize N p, place nuclei clouds ~k(Y) = ~ ( Y -  Yk) uniformly around SR. 
Now place the p <e2 disjoint electron clouds ~,j(x)= ~ ( x - x j )  uniformly 
around SR independently of the nuclei. Assume that R is large enough 
(depending on g2) that the disjointness of the electron clouds does not force 

to have support smaller than BI(0). The nuclei-nuclei interaction energy 
is ~(e2q)2/2R and the electron-electron interaction energy is <~p2/2R. 
The electron-nuclei interaction energy is>~-e2q(I--1/CR2)(R/R)= 
--e2(pq/R) + e2(Pq/R3). This is because q/CR 2 is approximately the number 
of nuclei which intersect supp(~j) for a given j. If ~ is the appropriately 
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symmetrized linear combination of products of electron and nuclei clouds, 
then the discussion above shows that SSs~+q O.Vp+qO dxl...dx~dx~...dx~<~ 
(e2q - p)2/2R + e2pq/R3. Again ( W )  ~ -(e2q - p)2/R and S - Ap,qO" ~ 
( q5 /3  q_ p5/3)/R4/3" Therefore, for only a moderately large R we have 

Tr[exp(--flHNp'qBR)]<~expI--B(e2qsP)] '- 3R 

Finish off the argument in the obvious way. Let N' E = 0. Then, 
NI 

Z 
p = 0  

exp(/~# �9 N p) Tr [exp( - flHNo,BR) ] 

~< 

~< 

e2 -  1 N2 

+ ~ ~ exp(/~t.N p'q) Tr[exp(--~HNo,,B.)] 
p = l  q=O 

exp-/~#.pexp -//-3-~ + ~ Y', exp[-/~(#.p-/zpq)] 
0 p = l  q = 0  

xexpI-~(e23RP)21} 'Tr[exp(-~HN,~R+,)]  

{p~o exp [ - /3  @nP +~-R)] 

+C ~ exp -/~ /~oq+ .Tr[exp(-/3gN.8.+~)] 
q = 0  

Complete 

(5.4) 

the square: 

[ x exp k - "~ 

<~ C(Rfi ,),/2 exp[flR(#] + #2)] Tr[exp(--flHN.BR+~)] 

The sum in the grand canonical ensemble is thus 

e ~uN Tr [exp(-//HN, B.)] ~< C(Rfl-1) '/2 exp[/~R(# 2 + #2)] 
N 

x ~ exp(/~#-N) Tr[exp(--//HN, BR+~)] 
N ' E = O  

We must prove the following. 
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Claim. Tr[exp(-/~Hu,~R+,)] ~< exp{~[C(N)R + C[NbR -2] 
Tr[exp(--/~HN, BR)] }, where C(N) is uniform for /~ bounded below 
IN[ ~< M [BR[. 

The constant C(N) is the Lipshitz constant for FR(p, ~) in the 
variable. Since FR is convex in /~ and uniformly (in R) bounded (3.7) for 
fl> C and [Pl < M, it can be picked uniform there. Once the claim is 
proved, estimate (3.14) allows us to restrict to IN[ <M(#)]BR[, where 
M(p) is uniform for # bounded above. This translates the 
/~[C(N) R + C [N[ R -2] into a/~C(#) R and we will have 

~, e ~u'N Tr[exp( --~HN, BR)] <~ C(R~ 1)1/2 exp[/~R(#] + ##) + ]~C(#) R] 
N 

and 

x ~ e#"NTr[exp(--flHN, Bu)] 
N ' E = O  

1 log{C(Rfl_,),/Z.exp[~R(itz+#~)+flC(#)R] } 
/~ IBRI 

1 
~< o--T-g--7., [log C(R~ 1)1/2 + ~R(#2n + #~) + ~C(#) R] 

PlDRI 

+ 

R2 t- R ~  

Notice that C(#, B)/R 2 is actually used to dominate 
log C(R~ 1)m/~ IBR[ + ~C(p)/R 2. The dependence on/~ of the asymptotic 
behavior in R is not brought out. 

Proof of Claim: 

Tr [ exp( -  flHu, se+,)] = 

where 

exp[--fl< HN, BR+,On, ~.)] 
~Pn e i g e n v a l u e s  o n  B R  + 1 

{ 
n 
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This quantity is 

~< Zexp  -/3 ~ <HN,s.~),~>--fl 
n 

R 2 

As ( V~, ~ ) >i - ( HN, B, ~, ~ ) -- C ~2~=1 Ng (by stability of matter theorem 
for the operator --AN, BR + 2VN), this sum is 

~<exp ( ~ 2  i@1Ni)~exp { - f l  I ( ~ +  1)2 +~-52] (HN, BR~,~)} 

exp Tr 
c sN,) R 2 c  

E ] ~< exp ~ ~ Ni+flC(N)R Tr[exp(--flHumR)] 
i = 1  

where C(N) is the Lipshitz constant for FR(fi, p) in the fl variable. | 

Remark. The e r r o r  (#n2-t-#p2)/R 2 is a shortcoming of this proof. It 
results because we correspond nonneutral systems to neutral systems by 
adding particle. If #, or/~p < 0, then this greatly decrease the corresponding 
terms in the sum. This error could be removed by a few pages of argument. 
As a stronger version of the Neutrality Lemma is not needed for the 
resolution of the continuity problem, I will not carry out these details. 

Recalling Section 3.5, we already know that F is continuous at p--0. 
Therefore, we are only concerned with continuity at p s ~?E • away from 
zero. If a neutral p is nonzero then at least two components Po, Pn must be 
nonzero, one corresponding to  positive charge and the other to negative 
charge. Under the equivalence of ensembles, this translates into #o and #, 
being bounded below. 

The Neutrality Lemma allows us to combine the L. L. Inequality and 
Fefferman's Inequality. Let {R,}M1, R,(M, RM)and {c;}M1 be as in the 
statement of Fefferman's Inequality and let R > R,(M, RM). The Covering 
Lemma implies that B R can be packed with C,. balls of each radius Ri, all 
disjoint. If the L. L. Inequality is applied to these subdomains of Bn and we 
then use the Neutrality Lemma and Fefferman's Inequality we obtain 
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e l~u'N Tr [exp( - flHN, BR)] 
N 

>~ ~ eflU'UTr[exp(--flHu, BR)] 
N ' E = O  

>~ ~ efl" N rr[ exp( -- fi gN, BR) ] 
i = 1  N . E = O  

>>. K(#, fl, R~)" ~ e~NTr[exp(--flHN,B~)] 
i = 1  N . E ~ O  

>1 ~= K(#,fl, Ri) c' -exp - k ( # , f l ) ~ [ B R [  

• ~ e fluN Tr[exp(-flHN, BR)] 
N 

Take logs and divide by fl IBRI to obtain 

>t 

C(#,/~) #2+#2 ~ IBRJH 

+ c 
R2 R2 k(#, fl) + FIR( #, fi) 

As stated in the Neutrality Lemma, C(#, fl) is uniform for # i<  C and fl 
bounded below. The constant k(#, fi) in Fefferman's Inequality is a sum 
k(#, fl) = C1(#, fl) + C2(#, fl). C1(#, fi) depends on free particle pressure due 
to the Laplacian acting on the unit cubes [see discussion after (4.5)]. It 
clearly decreases as any #i decreases or as fl increases. C2(#, fl) depends on 
the Lipshitz continuity and, as was pointed out at the end of Section 4.2, 
also decreases as any Pi decreases (for fl in bounded sets). Hence, for #n, #p 
bounded below and all #~<C we can pick R1 and M such that 

2 2 2 C(#, fl)/R~ + (#~ + gp)/R 1 - k (p ,  fl_)(C/M) is as small as we like, say, less 
than e > 0. If R > R.(M, R1(2 ~/3)M), [HR(#, fl) -- H(#, fl)l < e as long as # 
is in this range and fl is in a bounded set. In particular, the convergence is 
uniform as some #i ~ - ~ ,  as long as #,,  #p remain bounded below. (As 
the Remark after the Neutrality Lemma indicates, we can even remove the 
restriction on #~, #p.) 

5.2. C o n t i n u i t y  of  F(p) at  gE • 

As was pointed out in the last paragraph of Section 3.1 and discussed 
in the Remark after the Neutrality Lemma, we only need examine the con- 
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tinuity of F at some fi ~ dE • away from p -- O. In particular this means that 
some ~p (corresponding to a positively charged species) and some tSn 
(corresponding to a negatively charged species) are nonzero. Let 
6 =  {i[~i=O}. By assumption ~ : ~ .  Let OaE• { p ~ O E •  for all 
i ~ a }. For p ~ daE • let Pt be any path in E • tending to p as t ~ O. We must 
show that l im t_oF(p t )=F(p ) .  By possibly enlarging ~ we may assume 
that fi ~ int(aaE• The a priori convexity of F's restrictions to daE • allows 
us to assume the p t~ in t (E  • for t ~ 0 .  Write P=(Pa,  Pb), #=(#a,#b), 
where the subscript a denotes those p~,#~ with i~a. In this notation pt 
converges to r as t-~0. Let H~(#b)=lim,a_~ o~H(#a, Pa). 
By the uniform convergence of Hn(p) to H(#) for /~a<c as R ~  oo 
and the fact that limu . . . .  HR(#a,#b)=(fl[BRl)-l~__,Nbexp(fl#b'Nb) 
Tr[exp(--flHNb.S~)] is independent of the specific way in which 
# ~ - ~ - ~  for each R, H~(#b ) is well defined�9 Furthermore, by the 
equivalence of ensembles for the system composed of only species 
for which i ~ ,  Ha(#t,)=suppb. E~=O{#b'pb--F(O, pb)}. Equivalently, 
F(0, Pb) = sup,b {#b" Pb-- H~(#b)}, pb~int(0~ E• Since the Legendre 
transform of the limit of a sequence of convex functions is the limit of their 
Legendre transforms, this equals limbo_ ~suptzb{#b'Pb--H([Aa,#b)} 
independently of how #~ approaches - ~ .  

This paper is concluded by showing that lim~_oF(p ~)= 
sup,b {lib "P--~b -- H~(#b) }. By equivalence of ensembles, F(p') = 
sup~ {#. p* -H(#)} .  Since F(p) is finite for all p ~ E  • this supremum is 
attained at some #~ with #~ < const for all i, independently of t. Since H is 
bounded above by the free particle pressure (3.7), #~ > const as well. 

Now, let e > O. Write F(p ~) = #~ .p t  + sup, b {#b" P~ - H(#~, #b)}. Since 
#~ < const, # t .p~  < e for all small enough t. Hence, for small t 

F(p') < e + sup {#b "P~ - / / ( # ~ ,  #b)} 
#b  

As H is a decreasing function of each variable #~, this is 
<e  + sup, b {#b'P~b--H~(#b)}. On the other hand, if we define a sequence 
~ t  #a ~ --o0 for which ]/~. pta[ < ~ then 

F(pt )> -t . t . t -t #a p~+sup{#b  Pb--H(#~,#b)} 
#b  

�9 t ~ t  > - - e + s u p { # ~  p~- -U(#~ ,#b)}  
,Ub 

Letting t --* 0 gives 

> - e  + sup {#b " P ~ -  Ha(#b)} 
#b  
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